
Enhancing algorithmic thinking skills for application development: a

methodological approach in programming education

Feruz Jamoliddinovich Tokhirov

Navoi State University

Abstract: This paper presents a methodology for developing students’ algorithmic thinking in

application creation. In the digital age, algorithmic thinking is vital for computer science and IT

students. The approach focuses on systematic algorithm design, implementation, and improvement,

with emphasis on real-life natural processes and best practices in pedagogy and IT education. The

experiment was conducted in three stages and analyzed using the Student-Fisher criterion.

Keywords: algorithmic thinking, application development, programming education,

computational thinking, problem-solving, block diagrams

Introduction. In our country, specialized courses now include computer graphics, web design,

databases, programming languages, networking technologies, information security, as well as

software development and technical support [1].

Our observations show that many future IT professionals tend to focus on areas such as

computer graphics, web design, and software maintenance, while giving less attention to

programming languages. A key factor behind this tendency is the insufficient stimulation of students’

motivation and interest in programming, combined with the incomplete delivery of the subject’s

essence. As a result, significant challenges remain in the teaching of programming languages [2,3].

Fostering algorithmic thinking in future IT specialists is vital for application development.

Defined as “the structured sequence of actions inherent in programming” [4,5], it reflects intellectual,

creative, figurative, and logical reasoning. By applying planning skills, students better outline their

steps for effective problem-solving. Since “every process relies on algorithmic thinking” [7], it

represents “a system of cognitive operations and strategies directed toward problem-solving, where

the outcome is the construction of an algorithm” [8].

Such a mode of thinking is distinguished by its formality, logic, and accuracy, as well as by the

capacity to translate abstract concepts into a sequence of clear instructions. Through the gradual

execution of these steps, problems are resolved. At the same time, this approach forms the

fundamental basis for mastering programming technologies [9].

Cultivating algorithmic thinking among pupils and students plays a crucial role in programming

practice. Through this process, learners acquire the skills and competencies necessary to grasp the

core of a programming problem and translate it effectively into program code [10].

In the current system of continuous education, considerable emphasis is placed on teaching

pupils and students to algorithmize various problems, both in general secondary schools and higher

education institutions. However, our observations reveal that many learners struggle to design an

algorithm for a given task and to convert it into programming code. Consequently, their interest in

programming diminishes, and their algorithmic thinking fails to fully emerge and develop.

One of the key factors contributing to these difficulties lies in the lack of emphasis on logical

consistency when teaching students how to construct algorithms within the continuous education

system. In addition, the majority of assigned tasks are concentrated on algorithmizing mathematical

problems, which limits the scope of students’ algorithmic development.

Volume 1 Issue 6 Academic Journal of Science, Technology and Education | ISSN 3041-7848

October 20, 2025 75

Methodology. Programming involves multiple stages, with problem modeling and algorithm

formulation being the most difficult [11]. Textbooks usually explain linear, branching, and iterative

problems through examples [12], but often provide ready-made solutions for complex tasks without

showing their construction. This leads students to overestimate their ability to design algorithms,

resulting in difficulties when faced with new problems. Such challenges highlight the insufficient

development of algorithmic thinking and the urgent need to improve its teaching methodology.

To boost students’ interest and competence in programming, teaching should start with

algorithmic problem-solving based on real-life and technical processes. This approach enhances

engagement and develops skills in designing complex algorithms.

Incorporating natural processes into teaching offers a meaningful and engaging context for

introducing algorithmic concepts. Such “natural algorithms” often model complex systems and

emergent behaviors, thereby making abstract computational principles more concrete and accessible

for learners. By highlighting this real-world relevance, students’ motivation and interest in studying

algorithms can be significantly enhanced [12,13].

Therefore, within the framework of this research, particular emphasis is placed on this matter,

and it is recommended that students in higher education institutions be introduced to the following

questions when studying algorithms. Our investigations confirmed that presenting material through

block diagrams proves to be effective in guiding students to construct algorithms for various

problems. The following issues can serve as illustrative examples.

Example 1.Algorithm for picking ripe fruit and sorting it into three different sizes.

Figure 1. Fruit sorting algorithm block diagram.

Volume 1 Issue 6 Academic Journal of Science, Technology and Education | ISSN 3041-7848

October 20, 2025 76

Example 2. Algorithm for moving from address A to address B in a car.

Figure 2. Block diagram of the car’s motion algorithm.

Start

Start the car

Speed should not exceed 70

Keep moving

Pay attention

Let it wait

Keep moving

Termination

If there is a residential

area

Warm up the car Let the car move

Do not exceed 100 speed

If you encounter a

crosswalk

If there are pedestrians

on the road

If you meet at an

intersection

Pay attention

If it is red or yellow

Let it wait

Keep moving

If it runs out of fuel

Let the fuel be poured

Keep moving

When the address is

reached
Stop the car

Yes No

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Volume 1 Issue 6 Academic Journal of Science, Technology and Education | ISSN 3041-7848

October 20, 2025 77

Example 3. Algorithm of blood circulation in the human body

Figure 3.Algorithm of blood circulation in the human body.

The findings indicate that employing problems of this nature contributes to the development of

students’ algorithmic thinking. Moreover, the use of tools and platforms such as Crocodile ICT,

Draw.io, Cacoo.com, and programforyou.ru has proven effective for teaching block diagrams related

to these problems.

Through the use of the Crocodile ICT program, students are able to visualize algorithms for

different examples and tasks in the form of block diagrams. This tool also enables the modeling of

various processes, the representation of linear, branching, and iterative algorithms in diagrammatic

form, as well as the monitoring and analysis of these algorithms.

Start

Ye

s

No

If the heart is

beating
Termination

Pour into the left compartment Pour into the left ventricle

Let it go to the aorta

If there is a cephalic

artery

In case of arm artery

If the hepatic artery

Enter the abdominal artery

If the gastric artery

If the splenic artery

Go to the leg veins

Let it go to the brain

Get hands on

Let it go to the liver

Let it go to the stomach

Let it go to the spleen

Exchange gases in tissue organs
Let the lower cavity

enter the vein

Let gases exchange in brain

cells

Enter the superior vena

cava

Pour into the left

compartment

Pour into the left

ventricle

Let it pass to the

pulmonary artery

Let it go to the lungs

Let gases exchange in

the alveoli

Enter the pulmonary

vein

Ye

s

Ye

s

Ye

s

Ye

s

Ye

s

No

No

No

No

No

Volume 1 Issue 6 Academic Journal of Science, Technology and Education | ISSN 3041-7848

October 20, 2025 78

Figure 4. Block diagram prepared in Crocodile ICT program.

Block diagrams created in Crocodile ICT can be demonstrated in an animated format, where

various characters are capable of performing more than 40 different actions. Such visual and

interactive presentations enhance students’ engagement during instruction, particularly in learning

methods of constructing and explaining algorithms [6].

Additionally, this program provides a visual representation of the sequence of actions within a

block diagram. It also allows for the identification of errors: if a mistake occurs in the order of

operations, the program halts execution and generates an error notification.

Similar opportunities are offered by platforms such as lusidshart.som, gliffy.som,

wireflow.som, textograrho.som and Google Drawings. These tools can be effectively used to spark

students’ interest in algorithms and programming while simultaneously fostering the development of

their creative thinking.

Results. As part of the research, pilot tests were conducted in order to determine the

effectiveness of the methodology designed to develop students’ algorithmic thinking regarding the

creation of applications. The success of experimental work shows the need to take into account its

organizational and pedagogical aspects in this process. Therefore, special attention was paid to these

aspects. Experimental work was conducted in 2023 among students of the Navoi State Pedagogical

Institute in the field of "Mathematics and Informatics".

A total of 124 students were recruited for the experimental and control groups. Experimental

work was carried out in three stages: emphasis; formative; the finisher. At the critical stage of the

experimental work, students were interviewed and observed about the main features of the

informational educational environment.

In the formative stage, trainings were conducted for the experimental group based on the

proposed informational educational environment, and the following criteria were developed to

evaluate the efficiency of students’ learning: motivational; cognitive; technological; creative.

At the final stage, a mathematical-statistical analysis was performed based on the Student-

Fisher criterion in order to check the reliability of the results of students in the experimental and

control groups.

Volume 1 Issue 6 Academic Journal of Science, Technology and Education | ISSN 3041-7848

October 20, 2025 79

Appropriate mean values for samples using this criterion

41

1
X n X

i i
in

= 
= , dispersion

coefficients

2
3 ()

1 1

n x X
i i

Dn
i n

−
= 

= − , mean squared deviations
Dn n =

, variation indicators

n
n

X


 =

, reliable deviations of estimation

Dn
tn kн

n

 = 

, and in determining the mastery

indicators
100% 100%

3 3

X Y
P =  − 

formulas were used. According to the calculation result, it was

found that the average mastery rate of the experimental group was higher than that of the control

group, that is, it increased by 11%.

Conclusions. The study demonstrates that applying algorithms based on natural processes in

education effectively enhances students’ algorithmic knowledge, skills, and problem-solving

abilities, while also fostering greater engagement and motivation, which are crucial for successful

learning.

Using the recommended programs and platforms enables students to: develop skills in

expressing algorithms in words and block diagrams; apply algorithms to different problem types

(linear, branching, recurring); strengthen abilities in algorithmizing natural and technical processes;

enhance creativity in selecting effective algorithms; and improve skills in analyzing and revising

flawed algorithms.

In conclusion, it is effective to connect the given issues to life processes in developing students’

thinking about algorithms. Teaching algorithms of natural processes is a powerful pedagogical

approach in developing students’ algorithmic thinking. It combines the strengths of contextual

learning, visualization, interaction, problem solving, and cognitive development to promote a deep

and intuitive understanding of computing principles. On the basis of these, it will be possible to

increase students’ interest in algorithmization and to teach algorithmization of various complex

problems. As a result, it is possible to increase students’ interest in programming and creating

applications.

References

1. Tokhirov F. J. Problems of Developing Students’ Algorithmic Thinking about Programming

//ONLINE-CONFERENCES" PLATFORM. – 2021. – С. 169-170.

2. Jamoliddinovich T. F. Algorithmic Thinking of Students in Program using Electronic

Learning Resources Principles in Development //Kresna Social Science and Humanities Research. –

2022. – Т. 3. – С. 93-94.

3. Jamoliddinovich T. F. Methodology of developing algorithmic thinking of students on

programming in higher educational institutions //Berlin Studies Transnational Journal of Science and

Humanities. – 2022. – Т. 2. – №. 1.5 Pedagogical sciences.

4. Tokhirov F. et al. Methodology for developing students’ algorithmic thinking about creating

applications //AIP Conference Proceedings. – AIP Publishing LLC, 2025. – Т. 3268. – №. 1. – С.

070016.

5. David Weintrop. 2019. Block-based programming in computer science education. Commun.

ACM 62, 8 (August 2019), 22–25. https://doi.org/10.1145/3341221

Volume 1 Issue 6 Academic Journal of Science, Technology and Education | ISSN 3041-7848

October 20, 2025 80

6. Otakulova Durdona Rahmonovna. (2024). Methodology For Organizing Independent

Education Of Students Of Higher Educational Institutions In Subjects Related To Computer

Graphics. Educational Administration: Theory and Practice, 30(5), 168–173.

https://doi.org/10.53555/kuey.v30i5.1252

7. Friday Joseph Agbo, Solomon Sunday Oyelere, Jarkko Suhonen, and Sunday Adewumi.

2019. A Systematic Review of Computational Thinking Approach for Programming Education in

Higher Education Institutions. In Proceedings of the 19th Koli Calling International Conference on

Computing Education Research (Koli Calling ‘19). Association for Computing Machinery, New

York, NY, USA, Article 12, 1–10. https://doi.org/10.1145/3364510.3364521

8. Ana M Pinto-Llorente, Sonia Casillas Martín, Marcos Cabezas González, and Francisco José

García-Peñalvo. 2016. Developing computational thinking via the visual programming tool: lego

education WeDo. In Proceedings of the Fourth International Conference on Technological

Ecosystems for Enhancing Multiculturality (TEEM ‘16). Association for Computing Machinery,

New York, NY, USA, 45–50. https://doi.org/10.1145/3012430.3012495

9. Mirsanov U.M. Requirements for Creating Electronic Informational and Educational

Resources on Subjects of Mathematical Cycle in Global Internet //www. auris-verlag. de.–2017.

10. Mirsanov U.M., Ravshanova G. REQUIREMENTS FOR THE DESIGN OF TEACHING

AIDS IN THE SUBJECT OF PROGRAMMING LANGUAGES //International Journal of

Engineering Mathematics (Online). – 2021. – Т. 3. – №. 1.

11. Kanaki K, Kalogiannakis M. Assessing Algorithmic Thinking Skills in Relation to Age in

Early Childhood STEM Education. Education Sciences. 2022; 12(6):380.

https://doi.org/10.3390/educsci12060380

12. Futschek G. Algorithmic thinking: the key for understanding computer science

//International conference on informatics in secondary schools-evolution and perspectives. – Berlin,

Heidelberg : Springer Berlin Heidelberg, 2006. – С. 159-168.

13. Dybvig R.K. The Scheme programming language. – Mit Press, 2009.

Volume 1 Issue 6 Academic Journal of Science, Technology and Education | ISSN 3041-7848

October 20, 2025 81

https://doi.org/10.1145/3012430.3012495

