Volume 1Issue 6 Academic Journal of Science, Technology and Education | ISSN 3041-78!

Enhancing algorithmic thinking skills for application development: a
methodological approach in programming education

Feruz Jamoliddinovich Tokhirov
Navoi State University

Abstract: This paper presents a methodology for developing students’ algorithmic thinking in
application creation. In the digital age, algorithmic thinking is vital for computer science and IT
students. The approach focuses on systematic algorithm design, implementation, and improvement,
with emphasis on real-life natural processes and best practices in pedagogy and IT education. The
experiment was conducted in three stages and analyzed using the Student-Fisher criterion.

Keywords: algorithmic thinking, application development, programming education,
computational thinking, problem-solving, block diagrams

Introduction. In our country, specialized courses now include computer graphics, web design,
databases, programming languages, networking technologies, information security, as well as
software development and technical support [1].

Our observations show that many future IT professionals tend to focus on areas such as
computer graphics, web design, and software maintenance, while giving less attention to
programming languages. A key factor behind this tendency is the insufficient stimulation of students’
motivation and interest in programming, combined with the incomplete delivery of the subject’s
essence. As a result, significant challenges remain in the teaching of programming languages [2,3].

Fostering algorithmic thinking in future IT specialists is vital for application development.
Defined as “the structured sequence of actions inherent in programming” [4,5], it reflects intellectual,
creative, figurative, and logical reasoning. By applying planning skills, students better outline their
steps for effective problem-solving. Since “every process relies on algorithmic thinking” [7], it
represents “a system of cognitive operations and strategies directed toward problem-solving, where
the outcome is the construction of an algorithm” [8].

Such a mode of thinking is distinguished by its formality, logic, and accuracy, as well as by the
capacity to translate abstract concepts into a sequence of clear instructions. Through the gradual
execution of these steps, problems are resolved. At the same time, this approach forms the
fundamental basis for mastering programming technologies [9].

Cultivating algorithmic thinking among pupils and students plays a crucial role in programming
practice. Through this process, learners acquire the skills and competencies necessary to grasp the
core of a programming problem and translate it effectively into program code [10].

In the current system of continuous education, considerable emphasis is placed on teaching
pupils and students to algorithmize various problems, both in general secondary schools and higher
education institutions. However, our observations reveal that many learners struggle to design an
algorithm for a given task and to convert it into programming code. Consequently, their interest in
programming diminishes, and their algorithmic thinking fails to fully emerge and develop.

One of the key factors contributing to these difficulties lies in the lack of emphasis on logical
consistency when teaching students how to construct algorithms within the continuous education
system. In addition, the majority of assigned tasks are concentrated on algorithmizing mathematical
problems, which limits the scope of students’ algorithmic development.

October 20, 2025 75

Volume 1Issue 6 Academic Journal of Science, Technology and Education | ISSN 3041-78!

Methodology. Programming involves multiple stages, with problem modeling and algorithm
formulation being the most difficult [11]. Textbooks usually explain linear, branching, and iterative
problems through examples [12], but often provide ready-made solutions for complex tasks without
showing their construction. This leads students to overestimate their ability to design algorithms,
resulting in difficulties when faced with new problems. Such challenges highlight the insufficient
development of algorithmic thinking and the urgent need to improve its teaching methodology.

To boost students’ interest and competence in programming, teaching should start with
algorithmic problem-solving based on real-life and technical processes. This approach enhances
engagement and develops skills in designing complex algorithms.

Incorporating natural processes into teaching offers a meaningful and engaging context for
introducing algorithmic concepts. Such “natural algorithms” often model complex systems and
emergent behaviors, thereby making abstract computational principles more concrete and accessible
for learners. By highlighting this real-world relevance, students’ motivation and interest in studying
algorithms can be significantly enhanced [12,13].

Therefore, within the framework of this research, particular emphasis is placed on this matter,
and it is recommended that students in higher education institutions be introduced to the following
questions when studying algorithms. Our investigations confirmed that presenting material through
block diagrams proves to be effective in guiding students to construct algorithms for various
problems. The following issues can serve as illustrative examples.

Example 1.Algorithm for picking ripe fruit and sorting it into three different sizes.

No
Tes

Let 1t be cut off

| Butit in the 13t container | [Putit in the 2nd container |

v

_}| Let's move on to the next frut |: ! Put it in the 3rd contamer
I

Figure 1. Fruit sorting algorithm block diagram.

October 20, 2025 76

—’,
78

Volume 1Issue 6 Academic Journal of Science, Technology and Education | ISSN 3041-

Example 2. Algorithm for moving from address A to address B in a car.

v

| Start the car |

v
| Warm up the car |—>| Let the car move

If there is a residential
area

A2
Do not exceed 100 speed

Speed should not exceed 70 | |

Y A

Keep moving

If you encounter a

Pay attention crosswalk

¥

Lt

If there are pedestrians
on the road

Keep moving

v

If you meet at an
intersection

] Let it wait |

]

Pay attention

No

If it is red or yellow Keep moving

— Let it wait | Yes

If it runs out of fuel

| Let the fuel be poured

Y

Keep moving

When the address is
reached

| Stop the car
v

< Termination >

Figure 2. Block diagram of the car’s motion algorithm.

October 20, 2025 77

Volume 1Issue 6 Academic Journal of Science, Technology and Education | ISSN 3041-78!

Example 3. Algorithm of blood circulation in the human body

If the heart is
beating

Pour into the left ventricle <—| Pour into the left compartment

v

Let it go to the aorta

¥

If there is a cephalic
artery

Let it go to the brain

Let gases exchange in brain
cells

Enter the pulmonary

vein
A

In case of arm artery

Get hands on -

Let gases exchange in
the alveoli
Enter the abdominal artery T

Let it go to the lungs
7Y

If the hepatic artery Let it go to the liver |

Let it pass to the

pulmonary artery
7Y

Let it go to the stomach |— Pour into the left
ventricle

1

Pour into the left
compartment

If the splenic artery

Let it go to the spleen |—

Enter the superior vena
cava

Go to the leg veins

v

Exchange gases in tissue organs

A

Let the lower cavity
> enter the vein

Figure 3.Algorithm of blood circulation in the human body.

The findings indicate that employing problems of this nature contributes to the development of
students’ algorithmic thinking. Moreover, the use of tools and platforms such as Crocodile ICT,
Draw.10, Cacoo.com, and programforyou.ru has proven effective for teaching block diagrams related
to these problems.

Through the use of the Crocodile ICT program, students are able to visualize algorithms for
different examples and tasks in the form of block diagrams. This tool also enables the modeling of
various processes, the representation of linear, branching, and iterative algorithms in diagrammatic
form, as well as the monitoring and analysis of these algorithms.

October 20, 2025 78

———————————————————————————————————

Volume 1Issue 6 Academic Journal of Science, Technology and Education | ISSN 3041-78

o |0

|IRLH) [aosten [«] | 01 0] Wi

P P .
3ta k oL g blok-sxemasi arbtc
[—— - Bloks xem.
I a, b, c sonlarnikiriting 1
1 1 B Start
8 g 1
<[] val
be [val
b 20.96d
Yal
O T — -8
1
v
Matija: | 20.96400 a > b 7 -
N max e
T
max b
-
v
ma 5
-+ N
L] value «c O value m

— + | Seenel [Scene2 | Scened | <

Speed:x,32 90% 012327

Figure 4. Block diagram prepared in Crocodile ICT program.

Block diagrams created in Crocodile ICT can be demonstrated in an animated format, where
various characters are capable of performing more than 40 different actions. Such visual and
interactive presentations enhance students’ engagement during instruction, particularly in learning
methods of constructing and explaining algorithms [6].

Additionally, this program provides a visual representation of the sequence of actions within a
block diagram. It also allows for the identification of errors: if a mistake occurs in the order of
operations, the program halts execution and generates an error notification.

Similar opportunities are offered by platforms such as lusidshart.som, gliffy.som,
wireflow.som, textograrho.som and Google Drawings. These tools can be effectively used to spark
students’ interest in algorithms and programming while simultaneously fostering the development of
their creative thinking.

Results. As part of the research, pilot tests were conducted in order to determine the
effectiveness of the methodology designed to develop students’ algorithmic thinking regarding the
creation of applications. The success of experimental work shows the need to take into account its
organizational and pedagogical aspects in this process. Therefore, special attention was paid to these
aspects. Experimental work was conducted in 2023 among students of the Navoi State Pedagogical
Institute in the field of "Mathematics and Informatics".

A total of 124 students were recruited for the experimental and control groups. Experimental
work was carried out in three stages: emphasis; formative; the finisher. At the critical stage of the
experimental work, students were interviewed and observed about the main features of the
informational educational environment.

In the formative stage, trainings were conducted for the experimental group based on the
proposed informational educational environment, and the following criteria were developed to
evaluate the efficiency of students’ learning: motivational; cognitive; technological; creative.

At the final stage, a mathematical-statistical analysis was performed based on the Student-
Fisher criterion in order to check the reliability of the results of students in the experimental and
control groups.

October 20, 2025 79

Volume 1Issue 6 Academic Journal of Science, Technology and Education | ISSN 3041-78!

X =—73 nl.X ;
Appropriate mean values for samples using this criterion ni=1 , dispersion
=.2
n; (xl. -X)
. Dn B ;1 1 . . Tn = Dn
coefficients 1= n- , mean squared deviations V , variation indicators
D
Tn) n
5, =— A

=t
n kn
X | reliable deviations of estimation \/; , and in determining the mastery

X Y
P=—-100% - —-100%
indicators 3 3 formulas were used. According to the calculation result, it was

found that the average mastery rate of the experimental group was higher than that of the control
group, that is, it increased by 11%.

Conclusions. The study demonstrates that applying algorithms based on natural processes in
education effectively enhances students’ algorithmic knowledge, skills, and problem-solving
abilities, while also fostering greater engagement and motivation, which are crucial for successful
learning.

Using the recommended programs and platforms enables students to: develop skills in
expressing algorithms in words and block diagrams; apply algorithms to different problem types
(linear, branching, recurring); strengthen abilities in algorithmizing natural and technical processes;
enhance creativity in selecting effective algorithms; and improve skills in analyzing and revising
flawed algorithms.

In conclusion, it is effective to connect the given issues to life processes in developing students’
thinking about algorithms. Teaching algorithms of natural processes is a powerful pedagogical
approach in developing students’ algorithmic thinking. It combines the strengths of contextual
learning, visualization, interaction, problem solving, and cognitive development to promote a deep
and intuitive understanding of computing principles. On the basis of these, it will be possible to
increase students’ interest in algorithmization and to teach algorithmization of various complex
problems. As a result, it is possible to increase students’ interest in programming and creating
applications.

References

1. Tokhirov F. J. Problems of Developing Students’ Algorithmic Thinking about Programming
//ONLINE-CONFERENCES" PLATFORM. —2021. - C. 169-170.

2. Jamoliddinovich T. F. Algorithmic Thinking of Students in Program using Electronic
Learning Resources Principles in Development //Kresna Social Science and Humanities Research. —
2022.—-T.3.-C. 93-94.

3. Jamoliddinovich T. F. Methodology of developing algorithmic thinking of students on
programming in higher educational institutions //Berlin Studies Transnational Journal of Science and
Humanities. — 2022. — T. 2. — Ne. 1.5 Pedagogical sciences.

4. Tokhirov F. et al. Methodology for developing students’ algorithmic thinking about creating
applications //AIP Conference Proceedings. — AIP Publishing LLC, 2025. — T. 3268. — Ne. 1. — C.
070016.

5. David Weintrop. 2019. Block-based programming in computer science education. Commun.
ACM 62, 8 (August 2019), 22-25. https://doi.org/10.1145/3341221

October 20, 2025 80

Volume 1Issue 6 Academic Journal of Science, Technology and Education | ISSN 3041-78!

6. Otakulova Durdona Rahmonovna. (2024). Methodology For Organizing Independent
Education Of Students Of Higher Educational Institutions In Subjects Related To Computer
Graphics. Educational =~ Administration: Theory and Practice, 30(5), 168-173.
https://doi.org/10.53555/kuey.v30i15.1252

7. Friday Joseph Agbo, Solomon Sunday Oyelere, Jarkko Suhonen, and Sunday Adewumi.
2019. A Systematic Review of Computational Thinking Approach for Programming Education in
Higher Education Institutions. In Proceedings of the 19th Koli Calling International Conference on
Computing Education Research (Koli Calling ‘19). Association for Computing Machinery, New
York, NY, USA, Article 12, 1-10. https://doi.org/10.1145/3364510.3364521

8. Ana M Pinto-Llorente, Sonia Casillas Martin, Marcos Cabezas Gonzalez, and Francisco José
Garcia-Pefialvo. 2016. Developing computational thinking via the visual programming tool: lego
education WeDo. In Proceedings of the Fourth International Conference on Technological
Ecosystems for Enhancing Multiculturality (TEEM “16). Association for Computing Machinery,
New York, NY, USA, 45-50. https://doi.org/10.1145/3012430.3012495

9. Mirsanov U.M. Requirements for Creating Electronic Informational and Educational
Resources on Subjects of Mathematical Cycle in Global Internet //www. auris-verlag. de.—2017.

10. Mirsanov U.M., Ravshanova G. REQUIREMENTS FOR THE DESIGN OF TEACHING
AIDS IN THE SUBJECT OF PROGRAMMING LANGUAGES //International Journal of
Engineering Mathematics (Online). — 2021. — T. 3. — No. 1.

11. Kanaki K, Kalogiannakis M. Assessing Algorithmic Thinking Skills in Relation to Age in
Early Childhood STEM Education. Education Sciences. 2022; 12(6):380.
https://doi.org/10.3390/educscil 2060380

12. Futschek G. Algorithmic thinking: the key for understanding computer science
//International conference on informatics in secondary schools-evolution and perspectives. — Berlin,
Heidelberg : Springer Berlin Heidelberg, 2006. — C. 159-168.

13. Dybvig R.K. The Scheme programming language. — Mit Press, 2009.

October 20, 2025 81

https://doi.org/10.1145/3012430.3012495

