## Features of the course of iron deficiency conditions and risk factors for their development in children of the first year of life

Nigora Nasriddinovna Ergasheva Khilola Norjigit kizi Ruzikulova Tashkent State Medical University

**Abstract:** Iron deficiency represents the most prevalent micronutrient disorder affecting the pediatric population worldwide, with children in the first year of life constituting a uniquely vulnerable group. The profound physiological demands of rapid growth, expansion of blood volume, and neurological development during infancy create a precarious balance between iron supply and requirement. This period is characterized by a distinct and often insidious clinical course, where the classical signs of anemia are preceded by a critical latent stage of deficiency with significant functional consequences. The features of iron deficiency in infancy are marked by non-specific manifestations that can easily be attributed to other common childhood ailments, thereby delaying diagnosis. Furthermore, the risk factors for its development are multifaceted, originating from prenatal, perinatal, and postnatal influences. A comprehensive understanding of these risk factors, including maternal iron status, perinatal events such as cord clamping, and postnatal feeding practices, is paramount for developing effective preventive strategies. This article delves into the peculiarities of how iron deficiency conditions manifest in infants, emphasizing the continuum from depleted iron stores to functional iron deficiency and ultimately to overt iron deficiency anemia. It also provides a detailed analysis of the modifiable and non-modifiable risk factors that predispose this fragile population to nutritional iron deficiency, underscoring the imperative for vigilant screening and proactive nutritional management from the prenatal period through the first twelve months of life.

**Keywords:** infant iron deficiency, maternal ferritin, delayed cord clamping, postnatal iron depletion, complementary feeding, neurodevelopmental sequelae

## Introduction

The first year of human life is a period of unparalleled growth and development, a process that is fundamentally dependent on an adequate supply of essential nutrients. Among these, iron plays a non-negotiable role in oxygen transport, cellular respiration, DNA synthesis, and, most critically, the myelination and functioning of the developing central nervous system. Iron deficiency in infancy, even in its latent pre-anemic stages, is now recognized not merely as a hematological disorder but as a condition with potentially long-lasting implications for cognitive, motor, and socio-emotional development. The features of its clinical course are uniquely challenging for the clinician, as the infant cannot verbalize symptoms and the physical signs are subtle and late to appear. The trajectory from sufficiency to deficiency follows a well-defined path, beginning with the depletion of hepatic and reticuloendothelial iron stores, progressing to a stage where erythropoiesis is impaired despite a normal hemoglobin concentration, and culminating in frank iron deficiency anemia. Identifying infants at the earliest stages of this continuum requires a keen awareness of the specific risk factors that govern iron status. These factors are deeply rooted in the infant's history, beginning with the maternal iron endowment during gestation and extending through the critical window of dietary transition. A proactive approach to preventing iron deficiency must therefore be grounded in a thorough comprehension of these prenatal, intrapartum, and postnatal determinants.

The presentation of iron deficiency in an infant is a far cry from the classic picture seen in an adult. The course is a gradual insidious process, and its features evolve along the spectrum of severity. In the initial stage of storage iron depletion, the infant is typically entirely asymptomatic from a clinical standpoint. Biochemical markers such as serum ferritin begin to decline, but the functional supply of iron to the bone marrow and other tissues remains adequate. This stage is a silent warning, detectable only through laboratory investigation in high-risk individuals.

As the condition advances to the stage of iron-deficient erythropoiesis, often termed latent iron deficiency, the first subtle clinical features may emerge. These are not the features of anemia but rather the consequences of iron deprivation in other tissues. The infant may exhibit nonspecific behavioral changes such as increased irritability, lethargy, and a decreased interest in their surroundings. Parents may report that the child is more fussy or difficult to console. This period is critical as it coincides with a phase of rapid neurodevelopment, and the functional iron deficiency in the brain can begun to exert its effects. Pica, the consumption of non-nutritive substances, is a classic but less commonly reported sign in very young infants.

The final stage is iron deficiency anemia, where the hemoglobin level falls below the age-appropriate threshold. The clinical features here become more pronounced, though they remain frustratingly non-specific. Pallor, particularly of the palmar creases, conjunctivae, and mucous membranes, is the most consistent physical finding. Tachycardia and a systolic flow murmur may be present as compensatory cardiovascular mechanisms. However, the most concerning features are those related to neurodevelopment. Studies have consistently linked iron deficiency anemia in infancy to poorer cognitive outcomes, including delayed language development, compromised motor skills, and altered socio-emotional behavior. The anorexia that often accompanies significant deficiency can create a vicious cycle, further reducing iron intake. It is crucial to recognize that by the time anemia is clinically apparent, the developing brain may have already been deprived of adequate iron for a considerable period, highlighting the inadequacy of relying on overt signs alone.

The foundation for an infant's iron status is laid long before birth. The majority of iron accreted by a term infant is transferred from the mother during the third trimester of pregnancy. Consequently, any factor that compromises this transfer places the infant at high risk. Maternal iron deficiency during pregnancy is the single most significant prenatal risk factor. An anemic or iron-deficient mother has diminished stores to draw upon, resulting in reduced placental transfer and lower neonatal ferritin levels. This establishes a trajectory of low iron stores from the moment of birth.

Gestational age at birth is another paramount determinant. Prematurity, defined as birth before 37 weeks of gestation, is a major risk factor for early and severe iron deficiency. The preterm infant is born having missed the critical period of transplacental iron acquisition in the final trimester. They are thus born with significantly reduced iron stores, often only one-third to one-half that of a term infant. Compounding this initial deficit is the fact that preterm infants typically experience more rapid postnatal growth, further escalating their iron requirements. The physiological anemia of prematurity, while normal, can be deeper and more prolonged, necessitating careful monitoring and early supplementation.

Perinatal events also contribute significantly. The timing of umbilical cord clamping is a modifiable factor with a substantial impact on iron status. Delayed cord clamping, defined as waiting for at least 30 to 60 seconds after birth, allows for a physiological transfusion of placental blood to the newborn, which can increase the infant's blood volume and provide an additional 40 to 60 mg of iron. This simple, cost-effective intervention has been shown to improve iron status and reduce the risk of iron deficiency at several months of age. Conversely, immediate clamping deprives the infant

of this natural iron endowment. Perinatal blood loss, such as from fetomaternal hemorrhage, vasa previa, or traumatic delivery, can also deplete the infant's iron reserves at birth.

The postnatal period presents a new set of challenges and determinants for iron homeostasis. Dietary intake becomes the sole source of iron after the exhaustion of neonatal stores, making feeding practices a cornerstone of iron status in the first year.

The type of feeding is critically important. Exclusive breastfeeding is widely recommended for the first six months of life. However, human milk, while nutritionally ideal in most respects, is low in iron, with a concentration of approximately 0.3 mg/L. Despite the high bioavailability of this iron, the absolute amount is insufficient to meet the needs of a growing infant beyond the first four to six months. Therefore, the breastfed infant is entirely dependent on their birth iron stores until the introduction of iron-rich complementary foods. If these complementary foods are delayed or are poor in bioavailable iron, the infant is at high risk for developing deficiency.

In contrast, infant formulas are typically fortified with iron at levels of 10-12 mg/L, providing a consistent and substantial intake. Formula-fed infants are therefore at a lower risk of iron deficiency, assuming they consume adequate volumes. The introduction of unmodified cow's milk before the age of 12 months is a well-established and significant risk factor. Cow's milk is a very poor source of iron, and its consumption can lead to microscopic gastrointestinal blood loss in infants, further exacerbating iron losses. It also can replace the intake of iron-rich foods, creating a dual problem of low intake and increased loss.

Rapid growth velocity is another important postnatal factor. Infants with a high growth rate, including those recovering from malnutrition or those who were small for gestational age and experiencing catch-up growth, have disproportionately high iron demands to support the expansion of their red cell mass and tissue mass. This can quickly outstrip their dietary intake and stored reserves. Furthermore, any chronic illness or condition that affects nutrient absorption, such as celiac disease or inflammatory bowel disease, though rarer in infancy, can impair iron uptake and contribute to deficiency.

## Conclusion

The course of iron deficiency in the first year of life is characterized by a silent progression from depleted stores to functional impairment and finally to overt anemia, with features that are often subtle and non-specific. The developing brain is uniquely vulnerable during the latent stage, making early intervention imperative. The risk factors for its development are deeply embedded in the infant's journey from conception through the first twelve months, forming a chain of interconnected vulnerabilities. A child born to an iron-deficient mother, delivered preterm, with immediate cord clamping, and who is subsequently breastfed without timely introduction of iron-rich complementary foods, represents a textbook cascade of risk. A thorough understanding of these features and risk factors is essential for any healthcare provider involved in the care of infants. It mandates a shift in focus from treating established anemia to a proactive model of prevention. This includes optimizing maternal health, promoting delayed cord clamping, screening high-risk infants, providing timely iron supplementation where indicated, and counseling parents on appropriate feeding practices, particularly the critical introduction of iron-fortified foods or supplements at the appropriate age. Safeguarding the iron status of infants is a fundamental investment in their immediate health and their long-term neurological potential.

## References

1. Cappellini, M. D., Comin-Colet, J., de Francisco, A., Dignass, A., Doehner, W., Lam, C. S., ... & IRON CORE Group. (2017). Iron deficiency across chronic inflammatory conditions:

International expert opinion on definition, diagnosis, and management. American journal of hematology, 92(10), 1068-1078.

- 2. Camaschella, C. (2019). Iron deficiency. Blood, The Journal of the American Society of Hematology, 133(1), 30-39.
- 3. Stein, J., Connor, S., Virgin, G., Ong, D. E. H., & Pereyra, L. (2016). Anemia and iron deficiency in gastrointestinal and liver conditions. World journal of gastroenterology, 22(35), 7908.
  - 4. Clark, S. F. (2008). Iron deficiency anemia. Nutrition in clinical practice, 23(2), 128-141.
- 5. Camaschella, C. (2017). New insights into iron deficiency and iron deficiency anemia. Blood reviews, 31(4), 225-233.
- 6. Norkuziyeva, D. S. (2021). NEMIS VA OZBEK TILLARIDA FE'L QOLIPLI SOZ BIRIKMALARI. Science and Education, 2(2), 444-449.
- 7. Norkuziyeva, D. S. (2021). O'zbek va nemis tillarida ravishning tuzilishidagi tafovut va o'xshashliklar. Science and Education, 2(4), 604-609.
- 8. Sheralievna, N. D. (2021). Comparative Analysis of "Adverb+ Verb" Word Combinations in Uzbek and German Languages. American Journal of Social and Humanitarian Research, 2(9), 30-35.
- 9. Норкузиева, Д. Ш. (2022). ЎЗБЕК ВА НЕМИС ТИЛЛАРИ ФРАЗЕОЛОГИЯСИДАГИ ЗООМОРФИК ТАСВИРЛАР ТАХЛИЛИ. Science and innovation, 1(Special Issue 2), 56-59.
- 10. Норкўзиева, Д. Ш. (2022). МАКТАБ ЎҚУВЧИЛАРИДА ЎҚУВ МОТИВАЦИЯСИНИ ШАКЛЛАНТИРИШ МУАММО СИФАТИДА. Academic research in educational sciences, 3(NUU Conference 2), 851-855.
- 11. Muleviciene, A., Sestel, N., Stankeviciene, S., Sniukaite-Adner, D., Bartkeviciute, R., Rascon, J., & Jankauskiene, A. (2018). Assessment of risk factors for iron deficiency anemia in infants and young children: A case–control study. Breastfeeding Medicine, 13(7), 493-499.
- 12. Black, M. M., Quigg, A. M., Hurley, K. M., & Pepper, M. R. (2011). Iron deficiency and iron-deficiency anemia in the first two years of life: strategies to prevent loss of developmental potential. Nutrition reviews, 69(suppl 1), S64-S70.
- 13. Brotanek, J. M., Gosz, J., Weitzman, M., & Flores, G. (2007). Iron deficiency in early childhood in the United States: risk factors and racial/ethnic disparities. Pediatrics, 120(3), 568-575.
- 14. Brunt, D. R., Grant, C. C., Wall, C. R., & Reed, P. W. (2012). Interaction between risk factors for iron deficiency in young children. Nutrition & Dietetics, 69(4), 285-292.
- 15. Booth, I. W., & Aukett, M. A. (1997). Iron deficiency anaemia in infancy and early childhood. Archives of Disease in Childhood, 76(6), 549-554.
- 16. McCarthy, E. K., Murray, D. M., & Kiely, M. E. (2022). Iron deficiency during the first 1000 days of life: are we doing enough to protect the developing brain? Proceedings of the Nutrition Society, 81(1), 108-118.